Mitochondrial transcription factors TFAM and TFB2M regulate Serca2 gene transcription.

نویسندگان

  • Atai Watanabe
  • Masashi Arai
  • Norimichi Koitabashi
  • Kazuo Niwano
  • Yoshiaki Ohyama
  • Yoshihumi Yamada
  • Noriko Kato
  • Masahiko Kurabayashi
چکیده

AIMS Sarco(endo)plasmic reticulum Ca²(+)-ATPase 2a (SERCA2a) transports Ca²(+) by consuming ATP produced by mitochondrial respiratory chain enzymes. Messenger RNA (mRNA) for these enzymes is transcribed by mitochondrial transcription factors A (TFAM) and B2 (TFB2M). This study examined whether TFAM and TFB2M coordinately regulate the transcription of the Serca2 gene and mitochondrial genes. METHODS AND RESULTS Nuclear localization of TFAM and TFB2M was demonstrated by immunostaining in rat neonatal cardiac myocytes. Chromatin immunoprecipitation assay and fluorescence correlation spectroscopy revealed that TFAM and TFB2M bind to the -122 to -114 nt and -122 to -117 nt regions of the rat Serca2 gene promoter, respectively. Mutation of these sites resulted in decreased Serca2 gene transcription. In a rat myocardial infarction model, Serca2a mRNA levels significantly correlated with those of Tfam (r = 0.54, P < 0.001) and Tfb2m (r = 0.73, P < 0.001). Overexpression of TFAM and TFB2M blocked hydrogen peroxide- and norepinephrine-induced decreases in Serca2a mRNA levels. In addition, overexpression of TFAM and TFB2M increased the mitochondrial DNA (mtDNA) copy number and mRNA levels of mitochondrial enzymes. CONCLUSION Although TFAM and TFB2M are recognized as mtDNA-specific transcription factors, they also regulate transcription of nuclear DNA, i.e. the Serca2 gene. Our findings suggest a novel paradigm in which the transcription of genes for mitochondrial enzymes that produce ATP and the gene for SERCA2a that consumes ATP is coordinately regulated by the same transcription factors. This mechanism may contribute to maintaining proper cardiac function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy at heart: matching demand with production.

How are energy-consuming processes matched with energy supply in constantly working heart muscle cells? A new piece in the puzzle of myocardial gene regulation indicates that two main inducers of energy production also increase the abundance of a major consumer. Watanabe et al. convincingly demonstrate that mitochondrial transcription factors A (TFAM) and B2 (TFB2M) not only stimulate mitochond...

متن کامل

Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation

Human mitochondrial DNA is transcribed by POLRMT with the help of two initiation factors, TFAM and TFB2M. The current model postulates that the role of TFAM is to recruit POLRMT and TFB2M to melt the promoter. However, we show that TFAM has 'post-recruitment' roles in promoter melting and RNA synthesis, which were revealed by studying the pre-initiation steps of promoter binding, bending and me...

متن کامل

The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation

Mammalian mitochondrial transcription is executed by a single subunit mitochondrial RNA polymerase (Polrmt) and its two accessory factors, mitochondrial transcription factors A and B2 (Tfam and Tfb2m). Polrmt is structurally related to single-subunit phage RNA polymerases, but it also contains a unique N-terminal extension (NTE) of unknown function. We here demonstrate that the NTE functions to...

متن کامل

The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells.

Initiation of transcription in mammalian mitochondria depends on three proteins: mitochondrial RNA polymerase (POLRMT), mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2 (TFB2M). We show here that the recombinant mouse and human transcription machineries are unable to initiate transcription in vitro from the heterologous light-strand promoter (LSP) of mitocho...

متن کامل

Organization of the human mitochondrial transcription initiation complex

Initiation of transcription in human mitochondria involves two factors, TFAM and TFB2M, in addition to the mitochondrial RNA polymerase, POLRMT. We have investigated the organization of the human mitochondrial transcription initiation complex on the light-strand promoter (LSP) through solution X-ray scattering, electron microscopy (EM) and biochemical studies. Our EM results demonstrate a compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2011